

Ingegneria delle Telecomunicazioni Satellite Communications

20. From Outer Space to Earth – GNSS Bands & Signals

Marco Luise *marco.luise@unipi.it*

Dip. Ingegneria dell'Informazione, Univ. Pisa, Italy

Satellite Navigation Frequency Bands & Systems

GPS Signals: L1 C/A and L2C

- Carrier Frequency: f_c =1575.42 MHz=1540 f_0 , f_0 =1.023 MHz (L1)
- # Components: 1
- Bit Rate: 50 bps
- Data Protection Coding: None
- Chip Rate: $R_c = f_0$
- Modulation/Spreading: DS/SS BPSK with NRZ chip pulse p(t)
- Type/Length of Ranging Code: Satellite-specific Gold Code *L*=1023

$$x_{C/A}(t) = \sum_{n} c_{C/A}[n] d_{C/A}[n / 20460] p(t - nT_c) + j0$$

n is the chip index; *k=n*//20460 is the bit index, where *n*//20460 means «the result of the integer division n/20460»

Dip. Ingegneria dell'Informazione University of Pisa, Italy

(Modernized) GPS L2C: Pilot Signal & Data Encoding

- Carrier Frequency: f_c =1227.60 MHz=1200 f_0
- # Components: 2 (Data and Pilot)
- Data Bit Rate: 25 bps
- Data Coding: K=7, r=1/2 convolutional encoding, symbol rate R_s=50 baud
- Chip Rate: $R_c = f_0$ time-multiplex of the two components at $f_0/2$

- Modulation/Spreading: DS/SS BPSK with NRZ chip pulse p(t) same spectrum as C/A
- Pilot Code (no data): Civil-Long Code with L=767250 (1.5 s) extracted from a longer ML sequence, Data channel: Civil-Short L=10230 extracted from the same ML

$$x_{L2c}(t) = \sum_{m} c_{CS}[m] a_{L2c}[m/5115] p(t-2mT_c) \qquad c_{CS}[m] = c_{CS}[m+10230], c_{CL}[m] = c_{CL}[m+767250] + \sum_{m} c_{CL}[m] p(t-(2m+1)T_c) + j0 \qquad a_{L2c}[m] \qquad \text{encoded symbol}$$

Convolutional Encoding

GALILEO Signals: E6 B/C

GALILEO E6 B/C: primary/secondary codes

- Carrier Frequency: f_c =1278.75 MHz=1250 f_0
- # Components: 2 (B and C channels)
 - B channel Bit Rate: R_{h} = 500 bps
 - B channel Data Coding: Convolutional, r=1/2, symbol rate $R_s = 1,000$ baud
 - C channel: no data (pilot channel, pure code)
 - Chip Rate: $R_c = 5f_0 = 5.115$ Mchip/s

- Modulation/Spreading: DS/SS BPSK with NRZ chip pulse p(t) same spectrum as GPS L1 on a wider $5f_0$ bandwdith.
- Type/Length of Ranging Code:
 - B channel: memory code *L*=5115
 - C channel: memory code L=5115 XOR secondary memory code with a chip time equal to the primary code repetition period (same as data symbol rate)

$$x_{E6}(t) = \frac{1}{\sqrt{2}} \sum_{n} c_{E6B}[n] a_{E6}[n/5115] p(t-nT_c) + \frac{1}{\sqrt{2}} \sum_{n} \left(c_{E6C,p}[n] c_{E6C,s}[n/5115] \right) p(t-nT_c) + j0$$

Overall LONG code (good correlation properties), yet simpler to acquire (primary)

10

)ip.	Ingegneria	dell'Informazione
Jniv	ersity of Pi	sa. Italv

Signal Component	Tiered Code Period	Code Length (chips)							
Signal Component	(ms)	Primary	Secondary						
E5a-l	20	10230 <mark>(1 ms)</mark>	20						
E5a-Q	100	10230 (1 ms)	100						
E5b-I	4	10230 <mark>(1 ms)</mark>	4						
E5b-Q	100	10230 (1 ms)	100						
E1-B	4	4092 (4 ms)	N/A						
E1-C	100	4092 (4 ms)	25						

11

Galileo E6 – from Signal-In-Space (SIS) ICD

Signal composition:

$$e_{E6-B}(t) = \sum_{i=-\infty}^{+\infty} \left[c_{E6-B,|i|_{L_{E6-B}}} d_{E6-B,[i]_{DC_{E6-B}}} \operatorname{rect}_{T_{C,E6-B}} (t - iT_{C,E6-B}) \right]$$
$$e_{E6-C}(t) = \sum_{i=-\infty}^{+\infty} \left[c_{E6-C,|i|_{L_{E6-C}}} \operatorname{rect}_{T_{C,E6-C}} (t - iT_{C,E6-C}) \right]$$

Component (Parameter Y)	Ranging Code Chip-Rate R _{C,E6-Y} (MChip/s)	Symbol-Rate R _{D,E6-Y} (symbols/s)
В	5.115	1000
С	5.115	No data ('pilot component')

(Modernized) GPS L5

Dip. Ingegneria dell'Informazione

Marco Luise 20. From Outer Space to Earth – GNSS Bands & Signals

(Modernized) GPS L5: pilot, coding, primary/secondary, wideband

- Carrier Frequency: f_c =1176.45 MHz=1150 f_0
- # Components: 2
 - I : Bit Rate/Coding: $R_b = 50$ bps, r=1/2 convolutional, symbol rate $R_s = 100$ baud
 - Q:pilot
 - Chip Rate: $R_c = 10f_0 = 10.23$ Mchip/s

- Modulation/Spreading: DS/SS QPSK with NRZ chip pulse p(t) same spectrum as GPS L1 on a wider 10f₀ bandwdith.
- Type/Length of Ranging Code:
 - I: Primary M-sequence, L₁=10230 (1 ms), secondary L₂=10-symbol short code
 @ 1 kbaud
 - Q : same primary as above with time shift, secondary length 20 symbols.

$$x_{L5}(t) = \frac{1}{\sqrt{2}} \sum_{n} \left(c_{I5}[n] c_{OI5}[n / /10230] \right) a_{L2c}[n / /102300] p(t - nT_c) + j \frac{1}{\sqrt{2}} \sum_{n} c_{Q5}[n] c_{OQ5}[n / /10230] p(t - nT_c) + j \frac{1}{\sqrt{2}} \sum_{n} c_{Q5}[n] c_{OQ5}[n / /10230] p(t - nT_c) + j \frac{1}{\sqrt{2}} \sum_{n} c_{Q5}[n] c_{OQ5}[n / /10230] p(t - nT_c) + j \frac{1}{\sqrt{2}} \sum_{n} c_{Q5}[n] c_{OQ5}[n / /10230] p(t - nT_c) + j \frac{1}{\sqrt{2}} \sum_{n} c_{Q5}[n$$

$$\sigma_{\tau}[\mathbf{m}] \ge cT_c \times \sqrt{\frac{B_L}{2C/N_0}} \left(\frac{1}{2\pi\beta}\right)$$

 $B_L = 1/(2T_0)$ loop bandwidth (we'll see later on what it means) [Hz] C/N_0 signal-to-noise-ratio per unit bandwdith [dB · Hz] cT_c equivalent chip length [m] $S_s(f)$ GNSS signal psd

$$\beta^{2} = \frac{T_{c}^{2} \int_{-B_{RF}/2}^{+B_{RF}/2} f^{2} S_{s}(f) df}{\int_{-B_{RF}/2}^{-B_{RF}/2} S_{s}(f) df}$$

Normalized Squared Gabor Bandwidth in the receiver (radio) bandwidth B_{RF}

The MCRB for pseudorange accuracy 2/2

$$\beta^{2} = \frac{T_{c}^{2} \int_{-B_{R}F/2}^{-B_{R}F/2} f^{2}S_{s}(f) df}{\int_{-B_{R}F/2}^{-B_{R}F/2} S_{s}(f) df}$$

- The larger the Gabor bandwidth, the more accurate the pseudorange estimate
- The Gabor bandwidth is roughly proportional to the signal bandwidth BUT
- A conventional NRZ spectrum with most of its energy at the carrier frequency is not optimal

CRB and Gabor BW

1.

Low-Pass Spectrum $\beta_{LP} = \frac{\int_{RF}^{B_{RF}/2} f^2 \frac{C}{B_{RF}} df}{C} = \frac{\int_{B_{RF}/2}^{3} |B_{RF}|^2}{C} = \frac{B_{RF}^2}{12}$ $\beta_{LP} = \frac{B_{RF}}{2\sqrt{3}}$ $\beta_{LP} = \frac{B_{RF}}{2\sqrt{3}}$

2. Band-Pass Spectrum within the baseband (spectrum with subcarriers)

Starting from GPS C/A and adding subcarriers @ $\pm f_0$...

$$x(t) = \frac{1}{2j} \left(s(t)e^{j2\pi f_0 t} - s(t)e^{-j2\pi f_0 t} \right) = s(t)\sin\left(2\pi f_0 t\right) = \sin\left(2\pi f_0 t\right) \sum_n c[n]d[n/M] p(t-nT_c)$$

Normalized Frequency, f/f₀

The Offset signal is no longer constant-amplitude: was ±1 only, now any value between -1 and +1. So instead of the sinusoidal subcarrier we use a *square-wave, binary subcarrier*

 $x(t) = s(t) \operatorname{sgn}\left[\sin\left(2\pi f_0 t\right)\right]$

The spectrum is different than before, but it is not so different, still *offset*, AND the signal is constant-envelope !

BOC(n;m) means: chip rate mf_0 and subcarrier frequency nf_0

They are massively used in any GNSS

20

Easy computation of the BOC(n;m) spectrum: "embedding" the subcarrier into the chip pulse p(t)

$$S_{(1;1)}(f) = \frac{1}{T_c} |P_{(1;1)}(f)|^2 = f_0 |\frac{1}{2f_0} \operatorname{sinc}\left(\frac{f}{2f_0}\right) - \frac{1}{2f_0} \operatorname{sinc}\left(\frac{f}{2f_0}\right) e^{-j\pi f T_c} |^2 = \frac{1}{f_0} \operatorname{sinc}^2\left(\frac{f}{2f_0}\right) \operatorname{sin}^2\left(\frac{\pi f}{2f_0}\right) \\ S_{(6;1)}(f) = \frac{1}{T_c} |P_{(6;1)}(f)|^2 = \frac{1}{T_c} \left|\sum_{\ell=0}^5 \frac{1}{6} P_{(1;1)}\left(\frac{f}{6}\right) e^{-j2\pi\ell f \frac{T_c}{6}}\right|^2 = \frac{1}{36f_0} \operatorname{sinc}^2\left(\frac{f}{12f_0}\right) \operatorname{sin}^2\left(\frac{\pi f}{12f_0}\right) \left[\frac{\sin\left(\pi f / f_0\right)}{\sin\left(\frac{\pi f}{6f_0}\right)}\right]^2$$

Dip. Ingegneria dell'Informazione University of Pisa, Italy

GPS Signals: L1C

Dip. Ingegneria dell'Informazione University of Pisa, Italy Marco Luise 20. From Outer Space to Earth – GNSS Bands & Signals

- Carrier Frequency: L1 f_c =1575.42 MHz=1540 f_0
- # Components: 2 (Data and Pilot channels)
 - Data channel Bit Rate: R_b=50 bps with conv., r=1/2 encoding, symbol rate R_s
 =100 baud
 - Pilot channel: no data
- Chip Rate: $R_c = f_0$
- Modulation/Spreading: for data, BOC(1,1); for pilot, time-multiplex of BOC(1;1) and BOC(6;1) (TMBOC), where for 29/33 of time the signal is (1;1), switching to (6;1) *for* 4/33 of the time to provide an occasional wider-bandwidth component
 - Type/Length of Ranging Code:
 - Data channel: extended Legendre sequence L₁=10230 (10 ms, symbol period)
 - *Pilot* channel: *primary (different) extended Legendre sequence* L_1 =1023, secondary ML code L_2 =1800 with the same clock as encoded symbols (10 ms)

$$x_{E6}(t) = \frac{1}{\sqrt{2}} \sum_{n} c_{E6B}[n] a_{E6}[n/5115] p(t-nT_c) + \frac{1}{\sqrt{2}} \sum_{n} \left(c_{E6C,p}[n] c_{E6C,s}[n/5115] \right) p(t-nT_c)$$

The pilot is 5 dB stronger (*power factor 3*) than the data component:

GALILEO Signals: E1 B/C

- Carrier Frequency: $L1 f_c = 1575.42 \text{ MHz} = 1540 f_0$
- # Components: 2 (Data and Pilot)
 - B (Data channel) Bit Rate: R_b=125 bps with conv., r=1/2 encoding, symbol rate
 R_s=250 baud
 - C Pilot channel: no data
- Chip Rate: *R*_c
- Modulation/Spreading: Composite BOC (aka Multiplexed BOC, MBOC); each channel has a different subcarrier waveform obtained as a (different) combination of BOC(1;1) and BOC(6;1) – see next slide and pray in advance
- Type/Length of Ranging Code:
 - Data channel: Memory sequence L₁=4096 (4 ms)
 - *Pilot* channel: *primary (different) Memory sequence* L_1 =4096, secondary memory sequence L_2 =25 with the same clock as encoded symbols (4 ms)

The E1 CBOC signal components are generated as follows:

• eE1-B from the I/NAV navigation data stream DE1-B and the ranging code CE1-B, then modulated with the sub-carriers scE1-B,a and scE1-B,b

• *eE1-C* (pilot component) from the ranging code *CE1-C* including its secondary code, then modulated with the sub-carriers scE1-C, a and scE1-C, b

Component	Sub-carrier Type	Sub-carr	Ranging Code Chip-				
(Parameter Y)		$R_{S, \text{E1-Y}, a}$ (MHz)	$R_{S, E1-Y, b}$ (MHz)	Rate $R_{C, { m E1-Y}}$ (Mcps)			
В	CBOC, in-phase	1.023	6.138	1.023			
С	CBOC, anti-phase	1.023	6.138	1.023			

Component (Parameter Y)	Symbol Rate $R_{D,EI-Y}$ (symbols/s)
В	250
С	No data ('pilot component')

$$\alpha = \sqrt{10/11} \quad \beta = \sqrt{1/11}$$

Satellite Communications

Dip. Ingegneria dell'Informazione University of Pisa, Italy

Ingegneria delle Telecomunicazio

The subcarriers can be "embedded" into the chip pulses, that are now different for the two components

$$x_{E1}(t) = \frac{1}{\sqrt{2}} sc_B(t) \sum_n c_{E1B}[n] a_{E6}[n / /4092] p(t - nT_c) + \frac{1}{\sqrt{2}} sc_C(t) \sum_n \left(c_{E6C,p}[n] c_{E6C,s}[n / /4092] \right) p(t - nT_c) + j0$$

$$= \frac{1}{\sqrt{2}} \sum_n c_{E1B}[n] a_{E6}[n / /4092] p_{E1B}(t - nT_c) + \frac{1}{\sqrt{2}} \sum_n \left(c_{E6C,p}[n] c_{E6C,s}[n / /4092] \right) p_{E1C}(t - nT_c) + j0$$

$$\overset{a+\beta}{\underset{a-\beta}{}} \int_{0}^{-\frac{1}{a-\beta}} \int_{0}^{-\frac{1$$

SAME SPECTRUM AS L1C

- Carrier Frequency: L1 f_c =1,191.795 MHz=1165 f_0
- # Components: 4 (2 x Data (a,b) on I and 2x Pilot (a,b) on Q)
 - Data channels Bit Rate: R_b=25 bps on a-1, 50 bps on b-1, conv., r=1/2 encoding, symbol rate R_s=125 baud on a-1, 250 bps on b-1
- Chip Rate: $R_c = 10f_0$ (All)
- Modulation/Spreading: AltBOC (wait and fear) with two subcarriers to be possibly received separately and carrying different channels each, or to be processed jointly on a very wide bandwidth (50 MHz)
- Type/Length of Ranging Codes:
 - Primary codes length (all channels): L₁=10230 (1 ms). Generated through LFSR with different paameters (*Truncated and Combined M-sequences*)
 - Secondary codes length: L₂=20 for a-I, L₂=4 for b-I. L₂=100 for pilots. They are all memory codes.

We can create a two-channel *single side-band* signal (called *a*) from baseband I/Q components using a complex subcarrier for example at subcarrier frequency $15f_0$:

$$x_{a}(t) = \left[x_{a-I}(t) + j x_{a-Q}(t) \right] e^{-j2\pi 15 f_{0}t}$$

And we can also add *another* two-channel component (called *b*) at $-15f_0$:

$$x(t) = \left[x_{a-I}(t) + jx_{a-Q}(t) \right] e^{-j2\pi 15f_0 t} + \left[x_{b-I}(t) + jx_{b-Q}(t) \right] e^{+j2\pi 15f_0 t}$$

On each component, the two channels have different codes and can be CDMAseparated; if they are narrow-band enough, the two subcarriers can be FDMAseparated as well .

BUT the signal is not constant-amplitude

$$\begin{aligned} x(t) &= \left[x_{a-I}(t) + jx_{a-Q}(t) \right] e^{-j2\pi 15f_0 t} + \left[x_{b-I}(t) + jx_{b-Q}(t) \right] e^{+j2\pi 15f_0 t} \\ &= \left\{ \left[x_{a-I}(t) + x_{b-I}(t) \right] \cos(2\pi 15f_0 t) - \left[x_{b-Q}(t) - x_{a-Q}(t) \right] \sin(2\pi 15f_0 t) \right\} \\ &+ j \left\{ \left[x_{a-Q}(t) + x_{b-Q}(t) \right] \cos(2\pi 15f_0 t) + \left[x_{b-I}(t) - x_{a-I}(t) \right] \sin(2\pi 15f_0 t) \right\} \end{aligned}$$

Then, we create an AltBOC binary signal by using binary subcarriers

$$x_{AltBOC}(t) = \left\{ \left[x_{a-I}(t) + x_{b-I}(t) \right] \operatorname{sgn} \left[\cos(2\pi 15f_0 t) \right] - \left[x_{b-Q}(t) - x_{a-Q}(t) \right] \operatorname{sgn} \left[\sin(2\pi 15f_0 t) \right] \right\}$$

$$+j\left\{\left[x_{a-Q}(t)+x_{b-Q}(t)\right]\operatorname{sgn}\left[\cos(2\pi 15f_{0}t)\right]+\left[x_{b-I}(t)-x_{a-I}(t)\right]\operatorname{sgn}\left[\sin(2\pi 15f_{0}t)\right]\right\}$$

BUT the signal is not constant-amplitude, yet

AltBOC amplitude

The labeling represents the relative frequency of each complex value. The average constellation power is 16.

Constant-Amplitude AltBOC feature

Modified AltBOC (MBOC) (constant) Amplitude: looks like 8PSK

Dip. Ingegneria dell'Informazione University of Pisa, Italy

Need to add an intermodulation component to keep amplitude constant

$$\begin{aligned} x_{MBOC}(t) &= \left\{ \left[x_{a-I}(t) + x_{b-I}(t) \right] \operatorname{sgn} \left[\cos(2\pi 15f_0 t) \right] - \left[x_{b-Q}(t) - x_{a-Q}(t) \right] \operatorname{sgn} \left[\sin(2\pi 15f_0 t) \right] \right\} \\ &+ j \left\{ \left[x_{a-Q}(t) + x_{b-Q}(t) \right] \operatorname{sgn} \left[\cos(2\pi 15f_0 t) \right] + \left[x_{b-I}(t) - x_{a-I}(t) \right] \operatorname{sgn} \left[\sin(2\pi 15f_0 t) \right] \right\} \\ &+ I(t; x_{a-I}, x_{b-I}, x_{a-Q}, x_{b-Q}) \end{aligned}$$

The expression of *I* is too complicated to be computed real-time; the signal is generated through a *Look-Up Table* (LUT) approach (ROM)

AltBOC Waveforms

8

 $T_{s,E5}$

Marco Luise

 $sc_{E5-S}(t)$

The $15f_0$ subcarrier period $T_{s,E5}$ is split in 8 time-slots on which the signal is constant

Dip. Ingegneria dell'Informazione University of Pisa, Italy

 $\sqrt{2} + 1$

2

 $\frac{\sqrt{2}-1}{2}$ $\frac{-\sqrt{2}+1}{2}$

 $\sqrt{2} + 1$

2

0.5

0

-0.5

I/Q Diagram of AltBOC

The phase index *k* changes with time slot-by-slot (every $T_{s,E5}$ /8) according to the combination of the binary values of the 4 channels in the same time period. The 4 values are the address of the LUT, *k* is the contens

		Input Quadruples															
eE5a-I		-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1
eE5b-I		-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1
eE5a-Q		-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1
eE5b-Q		-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
t'=t modulo T _{s,E5}		k according to $s_{-1}(t) = \exp(ik\pi/4)$															
i_{T_s}	ť	k according to $s_{E5}(i) = \exp(ik\pi/4)$															
0	$[0, T_{s, E5}/8[$	5	4	4	3	6	3	1	2	6	5	7	2	7	8	8	1
1	$[T_{s,E5}/8, 2 T_{s,E5}/8]$	5	4	8	3	2	3	1	2	6	5	7	6	7	4	8	1
2	$[2 T_{s,E5}/8, 3 T_{s,E5}/8]$	1	4	8	7	2	3	1	2	6	5	7	6	3	4	8	5
3	$[3 T_{s,E5}/8, 4 T_{s,E5}/8]$	1	8	8	7	2	3	1	6	2	5	7	6	3	4	4	5
4	[4 T _{s,E5} /8, 5 T _{s,E5} /8[1	8	8	7	2	7	5	6	2	1	3	6	3	4	4	5
5	[5 T _{s,E5} /8, 6 T _{s,E5} /8[1	8	4	7	6	7	5	6	2	1	3	2	3	8	4	5
6	[6 T _{s,E5} /8, 7 T _{s,E5} /8[5	8	4	3	6	7	5	6	2	1	3	2	7	8	4	1
7	[7 T _{s,E5} /8, T _{s,E5} [5	4	4	3	6	7	5	2	6	1	3	2	7	8	8	1

Input values of the 4 components in a chip time

Temporal sequence of the 8 phase values to be generated in the same chip time

Dip. Ingegneria dell'Informazione University of Pisa, Italy

AltBOC PSD

Governative (Encrypted) PRS Channels

- GALILEO
 - E1 A channel: Q component, BOC_{cos}(15;2.5)
 - E6 A channel: Q component, BOC_{cos}(10;5)

41

- Sample BER computation (communications link budget) for GPS L1 C/A
 - Satellite RF power: P_{τ} =25.6 W=14 dBW
 - TX Antenna gain (max): G_T = 12 dB (dBi)
 - EIRP (max): EIRP= $P_{T (dB)} + G_{T (dB)} = 26 \text{ dBW}$ (about 500 W equivalent)
 - Satellite altitude: r=20,200 km
 - Free-Space Loss: $L=(4\pi r)^2 / \lambda^2 = (4\pi r f_c)^2 / c^2 = 182 \text{ dB}$
 - Received Power on Earth (nominal): C=EIRP-L=-156 dBW (no atmospheric attenuation)
 - Overall System Noise Temperature: *T*= 500 K (including antanna noise & LNA noise figure)
 - Resulting Thermal Noise level: $N_0 = kT = -201.6 \text{ dBW/Hz}$
 - RX Antenna Gain (handheld): G_R = -1 dB (dBi)
 - Receiver C/N_0 ratio: $C/N_0 = C + G_R N_0 = 45$ dB-Hz.
 - E_c/N_0 ratio: $T_c C/N_0$ =-15 dB (T_c = (1/1.023) µs)
 - E_b/N_0 ratio: $T_b C/N_0 = 28 \text{ dB} (T_b = (1/50) \text{ s})$ (Very GOOD)
 - BER with matched filter: $Q(\sqrt{2E_b / N_0}) \simeq 0$

BER curves

Marco Luise 20. From Outer Space to Earth – GNSS Bands & Signals